

NOTICE: A complete water analysis is required before a quote can be processed. Customer to provide the following info.

Companion Equipment:

dissolve the scale and clean the bed.

Location Notes:

It is advisable to feed a dealkalizer with softened waler.

The hardness ions in the feed water can combine with

the sulfate ions attracted to the anion resin and form an

insoluble calcium sulfate precipitate. This scale will tend

to foul the dealkalizer over time as it accumulates on the

resin bed. If this occurs, an acid regeneration may help to

Applications for Chloride Anion Dealkalizers :

Softened water is passed through the dealkalizer reducing free carbon dioxide, bicarbonate alkalinity, and sulfates, and replacing these with an equivalent amount of chlorides. The resulting water keeps boiler and process equipment clean and scale free and also solves the problems of excessive boiler alkalinity and corrosive Condensate. Savings are obtained by lowering boiler blow-down requirement and virtually eliminating condensate line corrosion due to carbon dioxide.

Complete these calculations to determine size:

1. Determine Total Anion Loading:

	5			
Anions	Symbol	as ions	factor	as CaCO ₃
Hydroxide Alkalinity	ОН		x 2.94 =	
Carbonate Alkalinity	CO₃		x 1.67 =	
Bicarbonate Alkalinity	HCO₃		x 0.82 =	
Sulfates	SO ₄		x 1.04 =	
Nitrates	NO_3		x 0.81 =	
Carbon Dioxide	CO ₂		x 1.14 =	
Chlorides	Cl		x 1.41 =	
Total Exchangable Anions =				
÷ 17.1				

Available Space: Ft In Room Width ____ Ft In Room Height ____ Ft In Room Length _____ Ft In Door Width ____ Inches Feed Water Pipe Size _____ gpg Raw Water Hardness ____ Gallons per Day Required _____ Kgr Water Softener Capacity _____

2. Determine Resin Capacity (Percent Alkalinity) =

Anions as grains per gallon = _

Total Alkalinty (OH + CO₃ + HCO₃) Divided by Total Exchangeable Anions

These charts illustrate the operating capacity of the anion exchange resin when regenerated with 5 lbs. of sodium chloride (salt) per cubic foot and approximately 0.25 lbs. per cubic foot of rayon grade sodium hydroxide (caustic). Addition of caustic to the regenerant solution will increase the resin capacity for alkalinity and CO2 due to a more efficient exchange with hydroxide ions as compared to chloride ions.

